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SUMMARY
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1. INTRODUCTION

The impact of adaptive methods on computational ¯uid dynamics is well recognized and can be

regarded as one of the most important developments in CFD in several decades. The idea behind

these approaches is to develop methods for error estimation (or error indication) and to use such

estimates as a basis for adapting the mesh to reduce, control or equidistribute the numerical error.

There is a large and still growing volume of evidence that such approaches can be highly effective

and reduce substantially the number of unknowns needed in a given simulation to achieve a target

error level; these approaches have even been successful in p- and hp-version ®nite element

approximations.1±5

In recent times the success of adaptive schemes and a posteriori error estimation methods has

prompted users to demand more information from such devices. In addition to giving rough estimates

suf®cient to deliver good meshes for controlling global approximations of energy or entropy, the need

for determining local errors in energy norms or in other norms is persistently expressed. Moreover,

there is naturally interest in determining errors in components of solutions of vector-valued functions,

directional errors and elementwise errors in various norms.

The development of such desirable error estimators turns out to be a quite dif®cult task. Virtually

all (there are exceptions) error estimators in use are global in structure. For example, the element

CCC 0271±2091/98/010033±11 $17.50 Received May 1996

# 1998 John Wiley & Sons, Ltd.

* Correspondence to: J. T. Oden, Texas Institute for Computational and Applied Mathematics (TICAM), 3500 W Balcones Ctr
Dr, MCC 3 11040, Austin, TX 7875, U.S.A.

Contract grant sponsor: Of®ce of Naval Research; Contract grant number: N00014-89-J-3109



residual method (ERM) of Oden et al.6 and Ainsworth and Oden7,8 yields bounds of the type

kekE 4
PNE

k�1

Z2
K

� �1=2

;

where kekE is the global error in the energy norm and ZK is a local error indicator computed for

element OK in a mesh of NE elements. The numbers ZK may be poor indicators of the actual errors in

energy associated with OK.

In recent work, Babuska et al.9 and Oden and Feng10 pointed out that techniques such as the ERM

produce local estimates ZK incapable of detecting `pollution error' produced by residuals outside the

local region of interest. In order to obtain accurate local estimates, it was argued that this pollution

error must also be estimated.

In the present paper we extend the work of Reference 10 to the case of steady Stokesian ¯ows. The

result is a new method for estimating local and pollution errors in ®nite element approximations of

the Stokes problem. The approach is based on the idea that if (uH, pH) is the pair of velocity=pressure

approximations calculated on a coarse mesh and (uh, ph) is a ®ne-mesh approximation, then

(uh ÿ uH , ph ÿ pH ) is a reasonable approximation to the error. The ®ne-mesh approximation is never

actually computed. By following the recent work of Bank and Smith11 and Bank,12 we are able to

establish conditions suf®cient to guarantee that such estimates are valid. An important side bene®t is

that the approach allows us to compute componentwise estimates, directional error estimates and

local estimates in other norms.

2. PROBLEM SETTING

We consider steady, non-convecting, viscous ¯ows characterized by the inde®nite elliptic system

embodied in the classical Stokes problem:

find �u; p� 2 V� Q such that

a�u; v� � b� p; v� � f �v� 8v 2 V; �1�
b�q; u� � 0 8q 2 Q;

where

V � fv 2 �H1�O��N : v � 0 on @Og; Q � fq 2 L2�O� :

�
O

q dx � 0g;

a�u; v� :�
�
O
nHu : Hv dx; b�q; v� :�

�
O
ÿdiv vq dx;

with O a smooth bounded domain in RN, N� 2 or 3.

As usual, O is decomposed into a family of partitions ph of ®nite element meshes over which

general hp-approximations of the ®eld u and p are constructed. The family is assumed to be regular so

that standard local interpolation estimates hold.10 Let ph�H be a particular `coarse' mesh on which

we approximate (1) on subspaces VH � V and QH � Q and let Vh and Qh denote ®ner meshes in a

partition ph � pH . We write

Vh � VH � VhH � V; Qh � QH � QhH � Q: �2�
The approximations to (1) in (VH, QH) and (Vh, Qh) are then

�uH ; pH � 2 VH � QH such that 8�vH ; qH � 2 VH � QH

a�uH ; vH � � b�pH ; vH � ÿ b�qH ; uH � � f �vH � �3�
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and

�uh; ph� 2 Vh � Qh such that 8�vh; qh� 2 Vh � Qh

a�uh; vh� � b�ph; vh� ÿ b�qh; uh� � f �vh�: �4�

We can write down suf®cient conditions for (uh ÿ uH , ph ÿ pH ) to be a reasonable approximation

of (uÿ uH , p7 pH) and we summarize these in Section 4. With the assumption that such conditions

do indeed hold, we focus on properties of the errors

eH � uh ÿ uH ; EH � ph ÿ pH : �5�

3. STRUCTURE OF THE ERROR

Introducing (5) into (4) gives

a�eH ; vh� � b�EH ; vh� ÿ b�qh; eH � � R�vh; qh� 8�vh; qh� 2 Vh � Qh; �6�
where R�vh; qh� is the ®ne-mesh residual given by

R�vh; qh� � f �vh� ÿ a�uH ; vh� ÿ b�pH ; vh� � b�qh; uH �: �7�
Each error component can be expressed as a linear combination of the basis functions spanning Vh,

VhH, Qh and QhH; symbolically,

eH �x� � PNh

m�1

eem
u wm�x�; EH �x� � PMh

k�1

eek
pck�x�; �8�

where fwmg and fckg are appropriate ®ne-mesh bases. Thus introducing (8) into (6) leads to a linear

algebraic system for the error coef®cients eem
u and ee k

p:

Aee � R; �9�
A being the global ®ne-mesh stiffness matrix and R being the residual vector.

Let OK 2 pH be a typical element (or patch) in the coarse mesh, GI be its interface with the

remaining elements and O ~K be the remaining elements:

�O ~K �
SNE

L�1

�OLn�OK [ GI �:

Then (9) can be written as

AK AKI 0

AIK AI AI ~K

0 A ~KI A ~K

24 35 eeK

eeI

ee ~K

24 35 � RK

RI

R ~K

24 35 � R: �10�

We decompose R as

R �
RK

RI

R ~K

264
375 � RK

R
�K�
I

0

264
375� 0

R
� ~K�
I

R ~K

264
375; �11�
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so that

AK AKI 0

AIK AI AI ~K

0 A ~KI A ~K

264
375 eeloc

K

ee�K�I

eepol
~K

2664
3775 �

RK

R
�K�
I

0

264
375 �12�

and

AK AKI 0

AIK AI AI ~K

0 A ~KI A ~K

264
375 eepol

K

ee�
~K�

I

eeloc
~K

2664
3775 �

0

R
� ~K�
I

R ~K

264
375: �13�

The solutions of (12) and (13) provide the complete relative representation of errors on O and reveal

how the residuals on O ~K affect the errors on OK and vice versa. The local error component eeloc
K is due

to the residuals on the interior degrees of freedom on OK, the error component eepol
K is the pollution

error over O ~K from the residuals on OK, while the error component ee�K�I is the local error when it is

associated with OK and is the pollution error when it is associated with O ~K . Analogous interpretations

apply to pollution and local errors on O ~K . Thus the local and pollution error components on OK can be

written in the form

�eeloc
K � eeloc

K

ee�K�I

� �
; �eepol

K �
�
eepol

K

ee�
�K�

I

�
�14�

and the total error on OK (including its boundary GI) is

�eeK � �eeloc
K � �eepol

K : �15�
It is important to note that the matrix Aÿ1

I does not need to be computed explicitly. A procedure to

handle this is described shortly.

A simple calculation reveals that10

�eeloc
K �

AK AKI

AIK
~A

� �ÿ1 RK

R
�K�
I

" #
; �eepol

K �
ÿAÿ1

K AKI

I

" #
�ee�

~K�
I ; �16�

where

~A � AI ÿ AI ~KAÿ1
~K

A ~KI ;
�ee�

~K�
I � ~Aÿ1�R�K�I ÿ AI ~Kee

loc
~K
�: �17�

Introducing these into (8) determines the pointwise errors.

A simple and ef®cient algorithm can be constructed to solve these equations assuming that the

coarse-mesh solution is known. First we observe the following.

1. The coarse-mesh solution (uH , pH) and the associated stiffness matrix AH are assumed to be

known and available for use in error estimation and AH is readily factored into upper and lower

triangular matrices: AH � LH UH .

2. Globally, if Ah is the ®ne-mesh stiffness matrix, then for any element OK (symbolically, with

vector notation displaced momentarily)

Ahee
loc
K � Ahee

pol
K � RK � R

h;pol
K

and

eepol
K � Aÿ1

h R
h;pol
K :
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3. A readily calculable coarse-mesh approximation of eepol
K is then

Aÿ1
H R

H;pol
K ;

where R
H;pol
K is the submatrix of R

h;pol
K corresponding to the coarse-mesh degrees of freedom.

4. The local problem for the ERM local error indicator jh;pol
K yields

AKj
h;pol
K � AK �Aÿ1

H R
H;pol
K �OK

� R
pol
K ; 14K 4NE; �18�

which then yields a local pollution error indicator.

The calculation of Aÿ1
K R

H;pol
K involves only a back substitution using UH. Moreover, the calculation

of R
h;pol
K can be accomplished using a D=SAXPY operation on the ERM error indicators. The cost of

the entire process beginning with a knowledge of AH and the coarse-mesh residuals is o�N2
H � and this

can be reduced to o�NH log NH � by fast matrix±vector multiplication algorithms. The full algorithm is

as follows.

Step 1. Solve the coarse-mesh problem for uH ; pH 2 VH � QH .

Step 2. Construct the perturbation space VhH and compute residuals.

Step 3. Compute local error indicator jh
K (14K4NE) using the ERM.10

Step 4. Calculate global pollution residuals from element OJ, J 6�K.

Step 5. Calculate equivalent pollution residual R
pol
K on OK based on R

h;pol
K , R

h;pol
K ! R

pol
K .

(a) Compute R
H;pol
K from R

h;pol
K via a Schur complement type of operation.

(b) Compute pollution residual R
pol
K :� AK �Aÿ1

H R
H;pol
K �OK

on OK.

Step 6. Solve for pollution estimate jh;pol
K using (18).

Up to Step 3, no more calculations have been done than are ordinarily required to compute error

indicators in conventional schemes based on the ERM. As noted earlier, the matrix operation

equivalent to Step 4 is a D=SAXPY operation, which can be executed ef®ciently using BLAS library

routines. Various parallel computing techniques can be adopted in this step.

4. SUFFICIENT CONDITIONS FOR USE OF FINE-MESH APPROXIMATIONS

We introduce suf®cient conditions for (uh ÿ uH , ph ÿ pH ) to be a reasonable approximation of

(uÿ uH , p7 pH). Following References 11 and 12, we assume the solutions (u, p), (uH, pH) and

(uh, ph) of the respective problems (1), (3) and (4) to ful®l the saturation assumption, i.e. there exists

a positive constant s< 1 such that

k�u; p� ÿ �uh; ph�k4sk�u; p� ÿ �uH ; pH �k; �19�
where k�k is a given norm on the product space V6Q.

For convenience we de®ne the bilinear form a: �V� Q� � �V� Q� ! R:

a��u; p�; �v; p�� � a�u; v� � b� p; v� ÿ b�q; u�: �20�
The bilinear form a is continuous and satis®es the standard inf±sup condition with respect to the

norm k�k, conditions required for solvability of problem (1). We also assume that a satis®es a

discrete inf±sup condition. In particular, there exist positive constants M and a> 0 such that for all

�u; p�; �v; q� 2 V� Q

a��u; p�; �v; q��4Mk�u; p�kk�v; q�k
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and for every �uh; ph� 2 Vh � Qh

sup
k�vh;qh�k4 1

ja��uh; ph�; �vh; qh��k
k�vh; qh�k � ak�uh; ph�k:

We are now able to show that (uh ÿ uH , ph ÿ pH ) forms a reasonable approximation of

(uÿ uH , p7 pH) in the sense that there exist two positive constants C1 and C2 such that

C1k�uÿ uH ; pÿ pH �k4 k�uh ÿ uH ; ph ÿ pH �k4C2k�uÿ uH ; pÿ pH �k: �21�
The derivation of the lower bound immediately follows from the saturation assumption. Indeed,

k�uÿ uH ; pÿ pH �k4 k�uÿ uh; pÿ ph�k � k�uh ÿ uH ; ph ÿ pH �k
4sk�uÿ uH ; pÿ pH �k � k�uh ÿ uH ; ph ÿ pH �k;

so that

�1ÿ s�k�uÿ uH ; pÿ pH �k4 k�uh ÿ uH ; ph ÿ pH �k: �22�
In order to derive the upper bound, we ®rst observe from (1) and (4) that

a��u; p� ÿ �uh; ph�; �vh; qh�� � 0 8�vh; qh� 2 vh � Qh; �23�
which yields

a��u; p� ÿ �vh; qh�� �a��uh; ph�; �vh; qh�� 8�vh; qh� 2 vh � Qh: �24�
Then, because VH � Vh and QH � Qh and from the inf±sup condition in the product space Vh � Qh,

we have

ak�uh; ph� ÿ �uH ; pH �k4 sup
k�vh;qh�k4 1

ja��uh; ph� ÿ �uH ; pH �; �vh; qh��j
k�vh; qh�k

4 sup
k�vh;qh�k4 1

ja��u; p� ÿ �uH; pH�; �vh; qh��j
k�vh; qh�k

4 sup
k�vh;qh�k4 1

Mk�u; p� ÿ �uH; pH�kk�vh; qh�k
k�vh; qh�k 4Mk�u; p� ÿ �uH ; pH �k;

which yields the upper bound

k�uh; ph� ÿ �uH ; pH �k4 M

a
k�u; p� ÿ �uH ; pH �k: �25�

5. NUMERICAL EXPERIMENTS

We present in this section error estimation results for the Stokes problem. We de®ne a two-

dimensional model problem on a unit square domain (0, 1)6(0, 1) for which the solution (u, p) is

smooth and given by

u � 5x4yÿ 10x2y3 � y5; v � x5 ÿ 10x3y2 � 5xy4 � 5x2; p � yÿ 3:

The numerical results are presented for the ®nite element solution obtained on the ®nal adapted hp-

mesh. First a solution is computed on a uniform coarse mesh, which is then re®ned in h and further

enriched in p in order to reduce the error to a given target error. The adaptation is performed based on

the error estimators we have developed. In Plates 1 and 2 respectively we show the ERM error
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estimates and the pollution error estimates computed according to the algorithm presented in Section

3. Since we know the exact solution, we also calculate the effectivity index as the ratio between the

computed error and the exact error. The global effectivity index for the error estimates with pollution

correction has a value of 1�052. We also provide the effectivity indices for each element, displayed in

Plate 3, which range from 0�997 to 1�12.

Plates 4 and 5 respectively are plots of the exact error in the ®rst velocity component and the

corresponding elementwise effectivity indices. This time they range from 0�918 to 2�14, but the

global effectivity index is about 1�25. On the other hand, the elementwise effectivity indices for

pressure, shown in Plate 7, vary from 1�00 to 1�24 only; this allows us to conclude that the error

estimates for pressure give a very good approximation of the exact error, which is shown in Plate 6.
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